Controls of food chain length in stream ecosystems

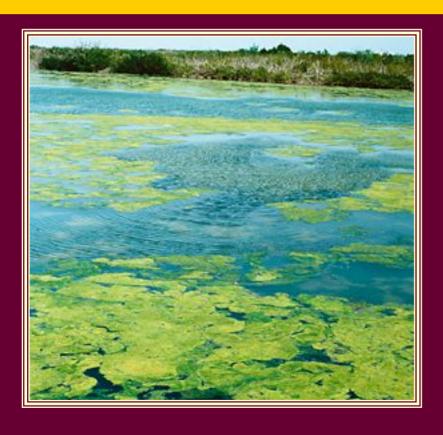
John Sabo, ASU

Collaborators:

Jacques Finlay, Univ. Minnesota

David Post, Yale Univ.

Ted Kennedy, GCMRC


What is food chain length?

- Number of transfers of 'energy' from 'bottom' of food web to 'top'
 - 'Energy' = organic carbon
 - 'Bottom' = weighted average of aquatic and terrestrial sources of organic C
 - 'Top' = biggest, meanest, toughest predator out there

Why is FCL important?

- Contaminants accumulate with trophic transfers too
- FCL can me manipulated to control algal blooms

What determines FCL?

- Resource supply (productivity)
 - Trophic transfer efficiencies are low (~5-20%)
 - In either case, 99% energy gone in 3 transfers
 - Larger resource supply → longer food chains (Elton 1926, Lindeman 1942)
- Ecosystem size
 - "Productive space" → longer food chains (Schoener 1989)
 - Just space → longer food chains (Post et al. 2000)
- Environmental Stability or Disturbance
 - Long term *in*stability → shorter food chains (Pimm 1982)
 - Short term disturbances → longer food chains (Power 1995)

What determines stream FCL?

- H1: Disturbance is paramount
 - May shorten (low flow) or lengthen (high flow) realized FCL
- H2: FCL increases with ecosystem size—within a given disturbance regime
 - Bigger pond = bigger fish
- H3: Resource availability (RA) will have a very minimal effect on FCL once the effects of disturbance and ecosystem size are removed
 - RA measured as GPP & ER via 2 station open channel methods
 - GPP more strongly related to FCL than ER

How do we measure FCL?

- Stable isotopes (δ^{15} N and δ^{13} C)
 - You are what you eat + 3.4% in δ^{15} N
 - Consumers are enriched by ~3.4 ‰ in $\delta^{15}N$ compared to their 'average' prey item
 - $\therefore \delta^{15}N$ is a trophic tracer
 - You are what you eat in δ^{13} C (+ <0.5 ‰)
 - Algal and terrestrial organic C *can* differ in δ^{13} C
 - $\therefore \delta^{13}$ C can be used as a C-source tracer
 - Mixing models using both isotopes allow us to estimate FCL with up to 3 distinct C sources
 - FCL = δ^{15} N Top consumer δ^{15} N Omnivorous Basal Consumer +1
 - Following Post 2002

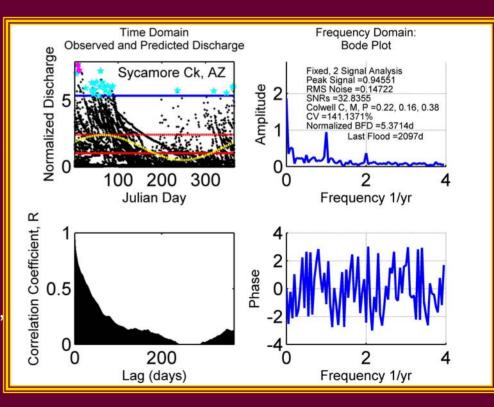
How do we measure independent variables?

- Disturbance: New method using time series of average daily discharge measurements
- Ecosystem Size: cross sectional area (CSA) or watershed area (WA)
- Resource availability: GPP and ER from 2-station open channel measurements of metabolism

Where do we get the data?

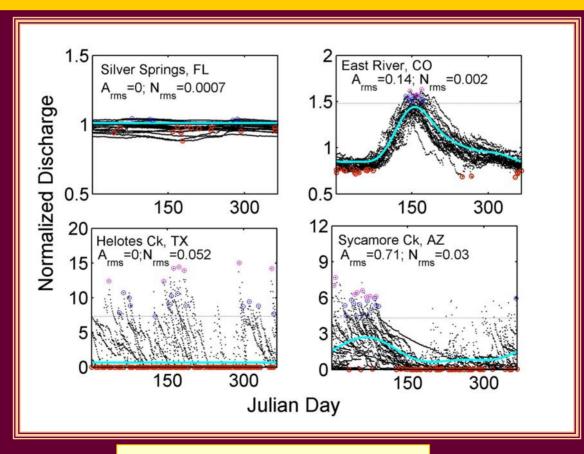
- Published data
 - Lotic Intersite Nitrogen eXperiment (LINX I & II)
 - 8-12 sites in NA, thanks to Pat Mulholland & Jen Tank
 - STROUD
 - 8-10 sites in Hudson River drainage thanks to Dave Arscott
 - Problems with published data
 - Not all same methods
 - Not all variables available for each stream
 - Missing some desired range of variation in some variables Midsized streams and large rivers
- Primary data collection
 - Arizona & New Mexico (8 sites)
 - Minnesota (8-10 sites)
 - New York (a few large rivers)

What I am going to show you today . . .

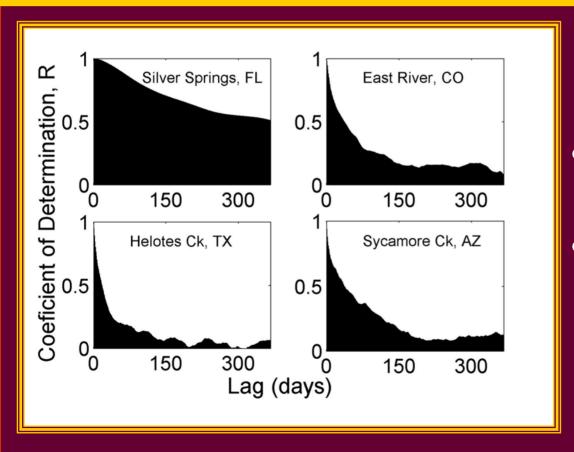

- How we measure daily, seasonal and interannual variation in discharge
 - New use of old technique: *Fourier transform*
 - Environmental stress, stochasticity, noise color and disturbance
- Univariate relationships between the three classes of independent variables and FCL
 - Tantalizing but not complete
 - More data needed for complete multiple regression analysis

Fourier analysis of NWIS Web daily discharge data

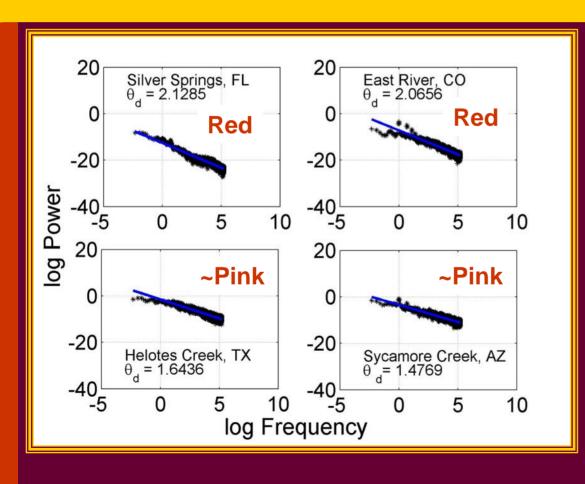
 Fourier transform converts data from time to frequency domain


$$D(k) = T^{-1/2} \sum_{t=0}^{T-1} d_t \exp\{-2\pi i v_k t\}$$

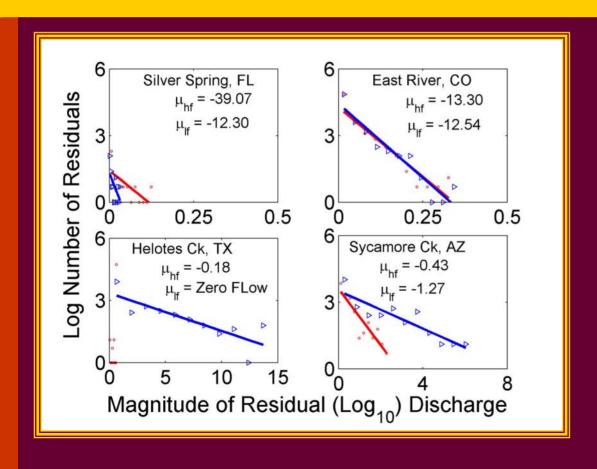
- Decomposes seasonal and inter-annual variation in frequency domain
 - Seasonal variation = 'signal'
 - Inter-annual variation = 'noise'


Example: Seasonal and inter-annual variation among 4 US streams

MO_ Inter-annual variation High


Low ← Seasonality → High

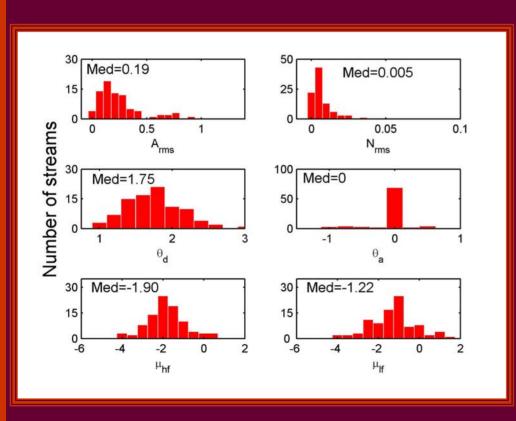
Correlograms: storage of atmospheric inputs


- More black = longer storage of rain events
- Slow vs. flashy release of hydrologic inputs

Noise color: hydrologic storage and flashiness in stream hydrographs

- White Noise, θ_d~0
 - Flashy, no 'storage'
- Pink Noise, θ_d~1
 - A little short-term term 'storage'
- Red Noise, θ_d~2
 - More short term 'storage'
- Black Noise, θ_d~3
 - Lots of short-term 'storage'

High- and low-flow intensity

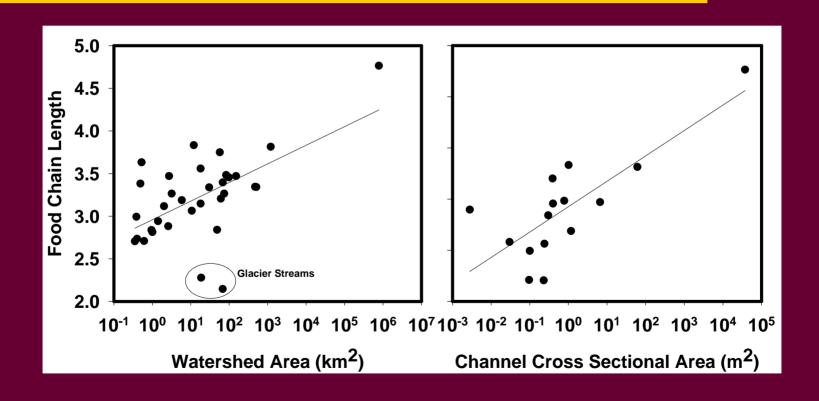


- •Red line = Low flow
- •Blue line = high flow
- μ is the slope of each line
- •The flatter the slope, the more intense the low- or high-flow regime
 - •i.e., lots of large residual values

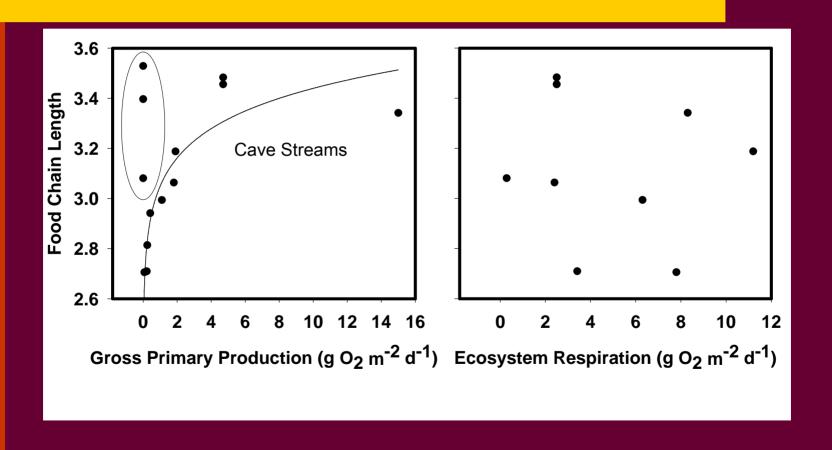
Summary of discharge metrics

- Seasonality, A_{rms}
 - Equivalent to 'Environmental Stress' (Menge & Sutherland 1986)
- Inter-annual variation, N_{rms}
 - Equivalent to 'Environmental Stochasticity'
- Signal to Noise Ratio (SNR)
 - Ratio of stress/stochasticity
- Daily-scale hydrologic storage
 - Equivalent to 'Noise Color' on daily time scale
- High- & Low-flow intensity
 - Integrated measure of disturbance that includes magnitude and frequency
 - Allows for analysis of low- and high-flow disturbance

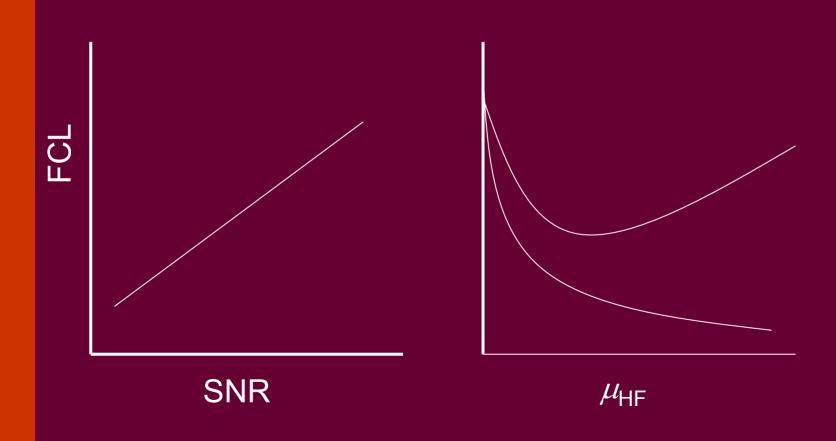
Distribution of flow metrics in data analyzed by Poff & Ward (1988)



- Many are normally distributed
- Some patterns in central tendencies are compelling
 - Noise color is nearly red on a daily scale, but white on an annual scale
 - High and low-flow disturbance is typically low (i.e., slopes > -1 are rare)


Controls on FCL in streams

- Ecosystem size
 - Here we look at WA and CSA
- Resource availability
 - Here we look at GPP and ER
- Disturbance
 - Here we just SPECULATE about SNR, $\mu_{\rm hf}$ and $\mu_{\rm lf}$


Ecosystem size

Resource availability

Disturbance (some speculation)

Summary

- Fourier methods provide compelling way to classify some biologically relevant properties of daily and annual variation in discharge
- Some tantalizing correlations between other independent variables and FCL
 - Positive effect of WA & CSA on FCL (similar to Post et al. 2001)
 - Saturating positive effect of GPP on FCL
 - No effect of ER on FCL (so far)
 - Positive effects of GPP and Size support 'Productive Space' hypothesis
- Work in progress
 - Big question: are the observed univariate effects contingent on disturbance
 - Multivariate analyses
 - Including flow metrics
 - Structural equation modeling to alleviate collinearity
 - Furiously filling in data gaps with primary measurements

blank

How do we measure FCL?

- Realized vs. Functional FCL
 - Isotopes → realized FCL based on 'assimilation' of C from all prey items
 - Experiments → functional FCL based on measured effects of top predators on basal resources